
1. Adaptive wavelet schemes for elliptic problems

1.1. The basic wavelet setting. We brie�y state the wavelet setting
as far as it is needed for our purposes. In general, a wavelet basis Ψ =
{ψλ : λ ∈ J } is a basis for an L2-space with speci�c properties outlined
below. The indices λ ∈ J typically encode several types of information,
namely the scale, often denoted by |λ|, the spatial location, and also
the type of the wavelet. For instance, on the real line, |λ| = j ∈ Z
denotes the dyadic re�nement level and 2−jk with k ∈ Z stands for the
location of the wavelet.
We will ignore any explicit dependence on the type of the wavelet

from now on, since this only produces additional constants. Hence, we
frequently use λ = (j, k) and

J = {(j, k) : j ≥ j0, k ∈ Jj},

where Jj is some countable index set and |(j, k)| = j. Moreover, Ψ̃ =

{ψ̃λ : λ ∈ J } denotes the dual wavelet basis, which is biorthogonal to
Ψ, i.e.,

〈ψλ, ψ̃λ′〉L2(Ω) = δλ,λ′ .

We assume that the domain Ω ⊂ Rd, d = 1, 2 under consideration
enables us to construct a wavelet basis Ψ with the following properties:

(1) the wavelets form a Riesz basis for L2(Ω);
(2) the cardinalities of the index sets Jj satisfy

#Jj � 2jd;

(3) the wavelets are local in the sense that

diam(supp ψλ) � 2−|λ|;

(4) the wavelets satisfy the cancellation property

|〈v, ψλ〉L2(Ω)| � 2−|λ|(
d
2

+m̃)|v|W m̃(L∞(supp ψλ))

for |λ| > j0 with some parameter m̃ ∈ N;
(5) the wavelet basis induces characterizations of Besov spaces Bt

q(Lp(Ω))
of the form

‖v‖Btq(Lp(Ω)) �

 ∞∑
j=j0

2j(t+d( 1
2
− 1
p

))q

∑
k∈Jj

|〈v, ψ̃j,k〉L2(Ω)|p
q/p


1/q

,

for 0 < p, q < ∞ and all t with d(1
p
− 1)+ < t < s for some

parameter s > 0.

In (5) the upper bound s depends, in particular, on the smoothness
and the approximation properties of the wavelet basis.
Using the fact that Bt

2(L2(Ω)) = H t(Ω) and by exploiting the norm
equivalence (5), a simple rescaling of Ψ immediately yields a Riesz basis
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for H t(Ω) with 0 < t < s. If homogeneous Dirichlet boundary condi-
tions are prescribed we will actually assume that the primal wavelet
basis Ψ characterizes the Sobolev spaces H t

0(Ω) instead of H t(Ω). Suit-
able constructions of wavelets on domains can be found in [1, 5, 8�12],
and we also refer to [2] for a detailed discussion.

1.2. Basis case. After this short introduction of wavelet bases we
brie�y show how they can be used to treat elliptic operator equations
of the form

(1.1) Au = f,

where we will assume A to be a boundedly invertible operator from
some Hilbert space H into its normed dual H′, i.e.,

‖Au‖H′ ∼ ‖u‖H, u ∈ H.
In our applications H is typically a Sobolev space H t(Ω) or H t

0(Ω) on
some domain Ω ⊂ Rd, d = 1, 2. We shall mainly focus on the special
case where

a(v, w) := 〈Av, w〉
de�nes a symmetric bilinear form on H which is elliptic in the sense
that

(1.2) a(v, v) ∼ ‖v‖2
H.

Usually, operator equations of the form (1.1) are solved by a Galerkin
scheme, i.e., one de�nes an increasing sequence of �nite-dimensional
approximation spaces SΛl := span{ηµ : µ ∈ Λl}, where SΛl ⊂ SΛl+1

,
and projects the problem onto these spaces, i.e.,

〈AuΛl , v〉 = 〈f, v〉 for all v ∈ SΛl .

To compute the actual Galerkin approximation, one has to solve a
linear system

GΛlcΛl = fΛl , GΛl = (〈Aηµ′ , ηµ〉)µ,µ′∈Λl , fΛl = (〈f, ηµ〉)µ∈Λl .

Then the question arises how to choose the approximation spaces in
a suitable way, for doing that in a somewhat clumsy fashion would
yield a very ine�cient scheme. One natural idea would be to use an
adaptive scheme, i.e., an updating strategy which essentially consists
of the following three steps:

solve − estimate − re�ne

GΛlcΛl = fΛl ‖u− uΛl‖ =? add functions
a posteriori if necessary.

error estimator

Already the second step is highly nontrivial since the exact solution
u is unknown, so that clever a posteriori error estimators are needed.
Then another challenging task is to show that the re�nement strategy
leads to a convergent scheme and to estimate its order of convergence,
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if possible. In recent years, it has been shown that both tasks can be
solved if wavelets are used as basis functions for the Galerkin scheme
as we shall now explain.
The �rst step is to transform (1.1) into a discrete problem. Property

(5) implies that a rescaled version of the wavelet basis Ψ gives rise to
a Riesz basis for H. By using this fact it is easy to see that (1.1) is
equivalent to

(1.3) Au = f

where

A := D−1〈AΨ,Ψ〉TD−1, u := Dc, u = cTΨ, f := D−1〈f,Ψ〉T ,

and D =
(
2−t|λ| δλ,λ′

)
λ,λ′∈J is a diagonal scaling matrix.

Now (1.2) implies that

‖A‖L(`2(J )), ‖A−1‖L(`2(J )) <∞,

and the computation of the Galerkin approximation amounts to solving
the system

AΛuΛ = fΛ := f |Λ, AΛ := (D−1〈AΨ,Ψ〉TD−1)|Λ.

Now, ellipticity (1.2) and Riesz property yield

‖u− uΛ‖`2(J ) ∼ ‖A(u− uΛ)‖`2(J ) ∼ ‖f −AuΛ‖`2(J ) ∼ ‖rΛ‖`2(J ),

so that the `2-norm of the residual rΛ serves as an a posteriori error
estimator. Each individual coe�cient (rΛ)λ can be viewed as a local
error indicator. Therefore a natural adaptive strategy would consist in
catching the bulk of the residual, i.e., to choose the new index set Λ̂
such that

‖rΛ|Λ̂‖`2(J ) ≥ ζ‖rΛ‖`2(J ), for some ζ ∈ (0, 1).

However, such a scheme would not be implementable since the residual
involves in�nitely many coe�cients. To transform this idea into an
implementable scheme, the following three subroutines can be utilized:

• RHS[ε,g]→ gε: determines for g ∈ `2(J ) a �nitely supported
gε ∈ `2(J ) such that

‖g − gε‖`2(J ) ≤ ε.

• APPLY[ε,A,v] → wε: determines for a �nitely supported
v ∈ `2(J ) a �nitely supported wε such that

‖Av −wε‖`2(J ) ≤ ε.

• COARSE[ε,v] → vε: determines for a �nitely supported v ∈
`2(J ) a �nitely supported vε ∈ `2(J ) with at most M signi�-
cant coe�cients, such that

(1.4) ‖v − vε‖`2(J ) ≤ ε.
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Moreover, M . Mmin holds, Mmin being the minimal number
of entries for which (1.4) is valid.

Then, employing the key idea outlined above, the resulting funda-
mental algorithm reads as follows:

Algorithm 1.1. SOLVE[ε,A, f ]→ uε

Λ0 := ∅; rΛ0 := f ; ε0 := ‖f‖`2(J ); j := 0; u0 := 0;
While εj > ε do
εj := 2−(j+1)‖f‖`2(J ); Λj,0 := Λj; uj,0 := uj;
For k = 1, ..., K do
Compute Galerkin approximation uΛj,k−1

for Λj,k−1;
Compute r̃Λj,k−1

:= RHS[c1εj+1, f ]−APPLY[c2εj+1,A,uΛj,k−1
];

Compute smallest set Λj,k s.t. ‖r̃Λj,k−1
|Λj,k‖`2(J ) ≥ 1

2
‖r̃Λj,k−1

‖`2(J );
od
COARSE[c3εj+1,uΛj,k ]→ (Λj+1,uj+1);
j := j + 1;

od

Remark 1.2. (i) We shall not discuss in detail the concrete nu-
merical realization of the three fundamental subroutines. The
subroutine COARSE consists of a thresholding step, whereas
RHS essentially requires the computation of a best N -term ap-
proximation. The most complicated building block is APPLY.
The subroutine can be realized and optimality of the resulting
algorithm can be proved up to order s∗, if the sti�ness matrix
A is s∗-computable, i.e., there exists matrices AJ , J ∈ N, with

‖A−AJ‖L(`2(J )) .M−s
J

for all s < s∗, where AJ has O(MJ) nontrivial entries per col-
umn whose combined computation needs at most the same or-
der of operations.

(ii) In ALGORITHM1.1, c1, c2 and c3 denote some suitably cho-
sen constants whose concrete values depend on the problem at
hand. Also the parameter K has to be chosen in a suitable way.
We refer to [3] for details.

It can be shown that ALGORITHM 1.1 has the following basic
properties:

• ALGORITHM 1.1 is guaranteed to converge for a huge class
of problems, i.e.,

‖u− uε‖`2(J ) . ε.

• The order of convergence of ALGORITHM 1.1 is optimal in
the sense that it asymptotically realizes the convergence order
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of best N -term wavelet approximation, i.e., if the best N -term
approximation satis�es O(N−s), then

‖u− uε‖`2(J ) = O((#suppuε)
−s).

• The number of arithmetic operations stays proportional to the
number of unknowns, that is, the number of �oating point op-
erations needed to compute uε satis�es O(#suppuε).

1.3. Frame case. The construction of wavelet bases particularly on
more involved domains is often very di�cult. In this cases the dis-
cretiztion of the PDE via a (Hilbert) frame for L2(Ω) sounds more
promising. The latter is a collection of functions

Ψ =
{
ψλ : λ ∈ J

}
,

ful�lling the frame property
(1.5)
c||f ||L2(Ω) ≤ ||{〈f, ψλ〉L2(Ω)}λ∈J ||`2(J ) ≤ C||f ||L2(Ω) for all f ∈ L2(Ω),

with constants c, C > 0. In contrast to a basis, a frame allows for re-
dundancies. Quite recently it hast turned out that the construction of a
frame of wavelet type in nontrivial domains is much simpler compared
to the basis case. On top of that, the redundancy of the frame might
be bene�cial since it may lead to a sparser representation of functions
due to the higher variety of decompositions. It is possible to construct
wavelet-type frames, where the primal functions have the same cru-
cial properties as in the basis case like vanishing moments, locality of
the support, cancellation properties and characterization of function
spaces. Analogue to the basis case one aims at the discrezitation

(1.6) Au = f

where

A := D−1〈AΨ,Ψ〉TD−1, u := Dc, u = cTΨ, f := D−1〈f,Ψ〉T .
The main di�erence to the basis scheme is that due to the redundancy of
the frame Ψ, the system matrix A has a non-trivial kernel, so that (1.6)
is not uniquely solvable. Straightforward Galerkin-type approaches
might hence run into stability problems.
Nonetheless, classical iterative schemes like the damped Richardson

iteration
(1.7)

u(j+1) := u(j) + ω(f −Au(j)), 0 < ω <
2

‖A‖L(`2(J ))

, j = 0, 1, . . .

or variations thereof, like steepest descent or conjugate gradient it-
erations, can still be applied in a numerically stable way, and the
associated expansions u(j) = c(j)TΨ will converge to the solution u
under quite general assumptions. See [4, 6, 7, 13] for further informa-
tion. By judiciously choosing the respective tolerances, convergence
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can even be preserved under perturbation of the exact iterations when,
e.g., each evaluation of the in�nite-dimensional right-hand side f and
each matrix-vector product Av are replaced by the numerical approx-
imations COARSE and APPLY. The resulting algorithm reads as
follows:

Algorithm 1.3. R_SOLVE[ε,A, f ]→ uε

% Let θ < 1/3 and K ∈ N be �xed such that 3ρK < θ.

% i := 0, v(0) := 0, ε0 := ‖(A|ran(A))
−1‖‖f‖`2(J )

While εi > ε do
i := i+ 1
εi := 3ρKεi−1/θ
f (i) := RHS[f , θεi

6αK
]

v(i,0) := v(i−1)

For j = 1, . . . , K do
v(i,j) := v(i,j−1) − α(APPLY[A,v(i,j−1), θεi

6αK
]− f (i))

od
v(i) := COARSE[v(i,K), (1− θ)εi]

od
uε := v(i)

It can be shown that ALGORITHM 1.3 has the same basic prop-
erties as ALGORITHM 1.1.
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